
Linac Modulator Operations and Performance

V. Peplov Feb. 2010

HVCM Breakdown Time

- 1. <u>3 runs considered</u>:
 - September December 2008;
 - March July 2009;
 - September December 2009
- 2. Analysis of downtime:
 - trips interrupted beam delivery only;
 - by sort of failures;
 - by modulators;
 - by runs/months
- 3. <u>Statistical data</u>:
 - from SNS operators;
 - from e-log;
 - root causes of some events not obvious

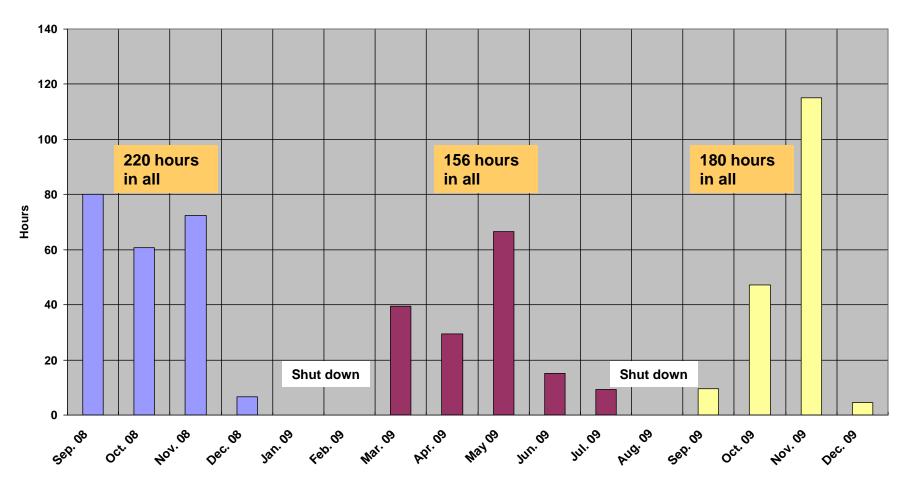
Downtime Statistical Data

(Sept. 2008 – Dec.2009)

Hours By Months

Hours By Faults

Month	Hours	% of total downtime
Sep. 08	80	14.4
Oct. 08	61	10.9
Nov. 08	73	13.0
Dec. 08	7	1.2
Jan. 09	0	0.0
Feb. 09	0	0.0
Mar. 09	39	7.1
Apr. 09	29	5.3
May 09	67	12.0
Jun. 09	15	2.7
Jul. 09	9	1.7
Aug. 09	0	0.0
Sep. 09	10	1.7
Oct. 09	47	8.5
Nov. 09	115	20.7
Dec. 09	4	0.8
Σ	556	100.0


Notice: Beam breakdown hours shown (rounded)

3 Managed by UT-Battelle for the U.S. Department of Energy

	SeptDec. 2008	March- July 2009	SeptDec. 2009	Σ Hours		
Scheduled Beam Run Hours	3218	2873	2475	8567		
Fault Type						
IGBT	82	43	4	129		
4kV Caps	66	33	25	124		
DFDC/Flux	17	26	12	55		
Mod. Tank	5	0	40	45		
SCR	0	24	8	32		
Cable Arcing	19	0	5	24		
IGBT Driver	11	5	0	16		
Dif. Voltage	2	5	5	12		
Water	0	9	2	11		
Timing	3	3	3	9		
Oil Pump	0	0	7	7		
Fiber	3	1	0	4		
Mod. Ol	0	3	1	4		
Misc./Unknown	12	3	69	84		
Σ	220	156	180	556		
Percent of scheduled Beam Time	6.8 %	5.4 %	7.2 %	6.6 %		

HVCM Downtime by Months

(Sept. 2008 - Dec. 2009)

Downtime Statistical Data (Sept. 2008 – Dec.2009)

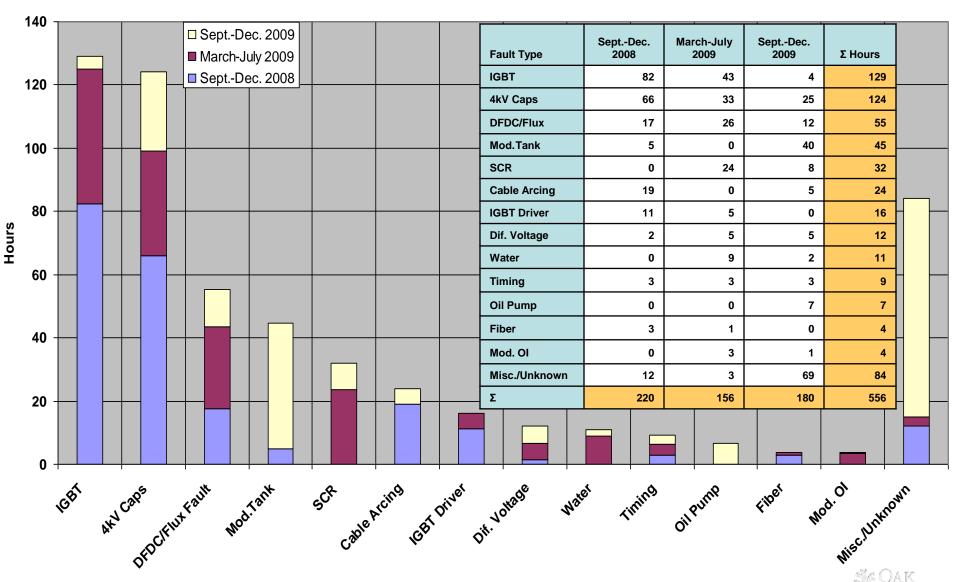
Hours By Modulators

	Sept Dec. 2008	March- July 2009	Sept Dec. 2009	Σ	% of all	350 -	(•	Sept. 2006 - Dec. 2009)	
DTL-1	18	4	18	40	7.2				8 modulators
DTL-3	6	1	6	13	2.3	300 —	SeptDec. 2009		
DTL-5	31	2	2	35	6.3		March-July 2009 SeptDec. 2008		
CCL-1	25	4	35	64	11.5	250 —			
CCL-2	26	0.5	6	32	5.8				
CCL-3	26	7	1	34	6.1	200 -		4 modulators	
CCL-4	26	3	0	29	5.2				
SCL-1	2	1	13	16	2.9	150 —			
SCL-5	0.5	4	0	5	0.9		3 modulators		
SCL-9	23	6	0	29	5.2	100 —			
SCL-12	11	19	38	68	12.2				
SCL-14	0	56	21	77	13.8	50 -			
SCL-15	0	27	16	43	7.7				
SCL-18	26	23	28	77	13.8	0	DTL	CCL	SCL
SCL-21	0	0.5	0.5	0.5	0.1	 SeptDec. 2009 March-July 2009 	<u>24</u> 6	42 13	114 136
Σ				556	100	SeptDec. 2008	55	104	61

HVCM Down Time by Area

(Sept. 2008 - Dec. 2009)

Managed by UT-Battelle 5 for the U.S. Department of Energy


Typical HVCM Faults

IGBT	IGBT explosion (smoke alarm);	IGBT internal damage
4 kV Caps	4kV/10uF capacitor explosion (smoke alarm);	Capacitor crack and leak
DFDC/Flux	Dynamic fault;	Boost transformer magnetic flux
SCR	SCR failure; SCR firing circuit failure;	Snubber board failure
Cable arcing	HV header cables arcing;	HV output cable arcing
IGBT driver	IGBT driver card failure	
Timing	Pulse repetition interval; Duty cycle; Gate in	put pulse width; Interpulse
Tank	120 kV boost capacitor failure;	Arcing inside tank
Fiber	Fiber optic IGBT control/read-back cables failure	
Diff. voltage	Storage capacitor voltage imbalance;	Balance bleeding resistors failure
Mod OI	Modulator output over current	
Oil pump	Oil pump;	Oil pump motor
Water leak	Water leakage	
Misc./Unknown	Miscellaneous trips (caused by bad contacts, no chassis, control head, load, etc.)	ise, voltage drops/spikes, control

HVCM Downtime by Fault Types

(Sept. 2008 - Dec. 2009)

7 Managed by UT-Battelle for the U.S. Department of Energy

Analysis by faults

Hours By Faults

1. IGBT failure:

- Main contribution in Sept.-Dec. 2008;
- Then number of events and downtime reduced since end-of-pulse stress problem was resolved in March 2009;
- Only one event in Sept.-Dec. 2009 down time reduced by 20X
- IGBT internal damage caused by previous operational stress;
- Shoot thru condition still may occur due to driver/firing failures;
- Slow change/drift of IGBT internal parameters and electronic delays (drivers)

4 kV capacitor failure:

2.

- Downtime reduced since original small caps were replaced with new large caps;
- Use caps with canola oil impregnant instead of synthetic oil leads to less damage in case of explosion (no fire reduced repair time);
- Only two events over last run (SCL-1 and SCL-15);
- Dry self-healing caps on CCL-4 a year without problems - look promising

		•		-
	SeptDec. 2008	March-July 2009	SeptDec. 2009	Σ hours
IGBT	82 (22 events)	43 (16 events)	4 (1 event)	129
4kV Caps	66 (7 events)	33 (4 events)	25 (2 events)	124
DFDC/Flux	17	26	12	55
Mod.Tank	5	0	40	45
SCR	0	24	8	32
Cable Arcing	19	0	5	24
IGBT Driver	11	5	0	16
Dif. Voltage	2	5	5	12
Water	0	9	2	11
Timing	3	3	3	9
Oil Pump	0	0	7	7
Fiber	3	1	0	4
Mod. OI	0	3	1	4
Misc./Unknown	12	3	69	84
Σ	220	156	180	556

Analysis by faults

Hours By Faults

1. <u>DFDC/Flux</u>:

- Flux faults- long adjustment procedure (up to hours);
- Reason drift of driver/IGBT parameters
- Most of dynamic faults less than 0.5 hours down time each (RF recovery);
- Arcing in the load, in the tank, voltage spikes may cause this fault;
- Down time reduced over last run

2. <u>Modulator tank</u>:

- Unusual symptoms long troubleshooting;
- Long repair;
- One case in 2008 run 120kV resonant capacitor failure; 3 caps and boost transformer were replaced;
- Two events and 40 break hours during last run (22 % of full down time): 120 kV capacitors overheating failure in DTL-1 and CCL-1 (5 years total operation time and 2.5 months with extended pulse width);
- Caps were replaced with the same type caps, but less operation time - have to be replaced with new type caps;
- De-Qing resistors, capacitors and some cables do not satisfy power rating demands – will be replaced in summer 2010

	SeptDec. 2008	March-July 2009	SeptDec. 2009	Σ hours
IGBT	82	43	4	129
4kV Caps	66	33	25	124
DFDC/Flux	17	26	12	55
Mod. Tank	5	0	40	45
SCR	0	24	8	32
Cable Arcing	19	0	5	24
IGBT Driver	11	5	0	16
Dif. Voltage	2	5	5	12
Water	0	9	2	11
Timing	3	3	3	9
Oil Pump	0	0	7	7
Fiber	3	1	0	4
Mod. OI	0	3	1	4
Misc./Unknown	12	3	69	84
Σ	220	156	180	556

Analysis by faults

Hours By Faults

1. <u>SCR</u>:

- Mostly new modulator SCL-14;
- It has the longest 3-phase input power cable and non-typical location in the gallery;
- Failures of digital and hard firing cards several times;
- Failure of SCR repair inside SCR cabinet difficult access, long process;
- Capacitors on snubber board failed;
- No issues since snubber board replaced

2. <u>Cable arcing</u>:

- Two events in run 2008 header cable to storage capacitor's plate connection – poor design;
- new design w/ cable replacement;
- One event of arcing in HV output cable terminal (5 down hours in last run);
- Other HV cables inspection prevent possible arcing (two cables repaired)

	SeptDec. 2008	March-July 2009	SeptDec. 2009	Σ
IGBT	82	43	4	129
4kV Caps	66	33	25	124
DFDC/Flux	17	26	12	55
Mod. Tank	5	0	40	45
SCR	0	24	8	32
Cable Arcing	19	0	5	24
IGBT Driver	11	5	0	16
Dif. Voltage	2	5	5	12
Water	0	9	2	11
Timing	3	3	3	9
Oil Pump	0	0	7	7
Fiber	3	1	0	4
Mod. OI	0	3	1	4
Misc./Unknown	12	3	69	84
Σ	220	156	180	556

HV output cable damage

- DTL-1 (RFQ) modulator: all three output cables have been re-terminated
- Largest numbers of operation hours
- Insulator degradation during long operation in the oil
- Inspection of all cables in the gallery
- Spare cable ordered

Analysis by faults

Hours By Faults

1. IGBT Driver :

- Old type of IGBT driver card used;
- Upgraded for easier access and replacement;
- Preliminary adjustment, testing on the bench helped to achieve more reliable operation;
- New generation of "intellectual" driver work is ongoing (SLAC and ORNL)
- 2. <u>Cap Bank Diff. Voltage</u>:
 - Most common reason balance bleeding resistor failure;
 - Sometimes this is not a reason of trips, but the result of other type of fault – first fault capture problem
- 3. <u>Water:</u>
 - One event in March 2009 water leakage into the tank SCL-15;
 - Tank opening and oil drying 9 hours down time;
 - Modification was done seals installed to prevent leak;
 - Some small leaks outside tank repaired quickly

	SeptDec. 2008	March-July 2009	SeptDec. 2009	Σ
IGBT	82	43	4	129
4kV Caps	66	33	25	124
DFDC/Flux	17	26	12	55
Mod. Tank	5	0	40	45
SCR	0	24	8	32
Cable Arcing	19	0	5	24
IGBT Driver	11	5	0	16
Dif. Voltage	2	5	5	12
Water	0	9	2	11
Timing	3	3	3	9
Oil Pump	0	0	7	7
Fiber	3	1	0	4
Mod. OI	0	3	1	4
Misc./Unknown	12	3	69	84
Σ	220	156	180	556

Analysis by faults

Hours By Faults

Discussed below <u>Oil pump</u>: One event during last run – SCL-14 oil pump failure; Replacement of broken oil pump assembly – 7 hours down time; Upgrade of oil pump assemblies done; Spare units prepared and tested; Design of new outside heat exchanger - on the way

- Most common reason bad termination (after catastrophic explosion and repair inside enclosure);
- Light intensity should be checked;
- Separate fiber optic cables in enclosure easy to replace with spare – reduce downtime
- 4. <u>Modulator over current:</u>
 - Rare event, depends on arcing in the load and/or output HV circuits

	SeptDec. 2008	March-July 2009	SeptDec. 2009	Σ
IGBT	82	43	4	129
4kV Caps	66	33	25	124
DFDC/Flux	17	26	12	55
Mod. Tank	5	0	40	45
SCR	0	24	8	32
Cable Arcing	19	0	5	24
IGBT Driver	11	5	0	16
Dif. Voltage	2	5	5	12
Water	0	9	2	11
Timing	3	3	3	9
Oil Pump	0	0	7	7
Fiber	3	1	0	4
Mod. Ol	0	3	1	4
Misc./Unknown	12	3	69	84
Σ	220	156	180	556

1.

2.

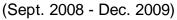
3.

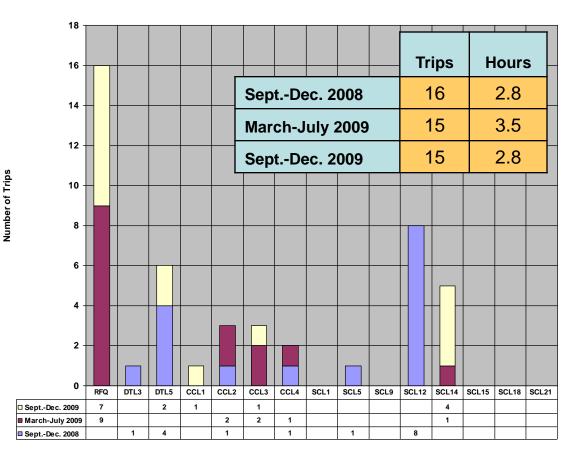
Timing:

Timing Trips Statistics

Timing Faults:

- Pulse Repetition Interval;
- - Duty Cycle;
- - Gate Input Pulse Width;
- Interpulse


Possible reasons:


- Optic transceiver/receiver failure;
- Fiber optic damage/dirty fibers;
- Noise;
- Timing system faults

Results:

- Down time RF cavity recovery time mainly;
- DTL-1 (RFQ) and SCL-14: need to pay attention;
- Additional diagnostics needed;
- Change logic of tripping?
- Some faults unnecessary?

HVCM Trips caused by Timing Faults

Analysis by faults

Hours By Faults

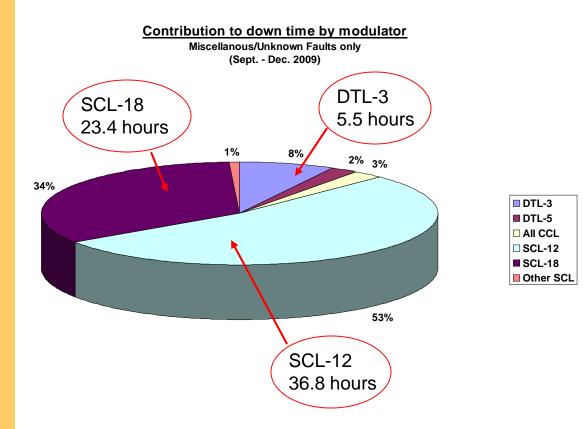
Miscellaneous/Unknown Faults Main contribution to down time during last run Trips caused by different types of faults Possible reasons: bad contacts. electrical noise, wiring defects, voltage drops/spikes, control circuits, **PPS and MPS interlock.** feedback reading, load, etc. Two modulators - main contributors to down time (see next slide) SCR control head - replaced Causes of trips not obvious - long troubleshooting

- 7. More diagnostics should be helpful
- 8. New controller best solution

	SeptDec. 2008	March-July 2009	SeptDec. 2009	Σ
IGBT	82	43	4	129
4kV Caps	66	33	25	124
DFDC/Flux	17	26	12	55
Mod. Tank	5	0	40	45
SCR	0	24	8	32
Cable Arcing	19	0	5	24
IGBT Driver	11	5	0	16
Dif. Voltage	2	5	5	12
Water	0	9	2	11
Timing	3	3	3	9
Oil Pump	0	0	7	7
Fiber	3	1	0	4
Mod. OI	0	3	1	4
Misc./Unknown	12	3	69	84
Σ	220	156	180	556

1.

2. 3.

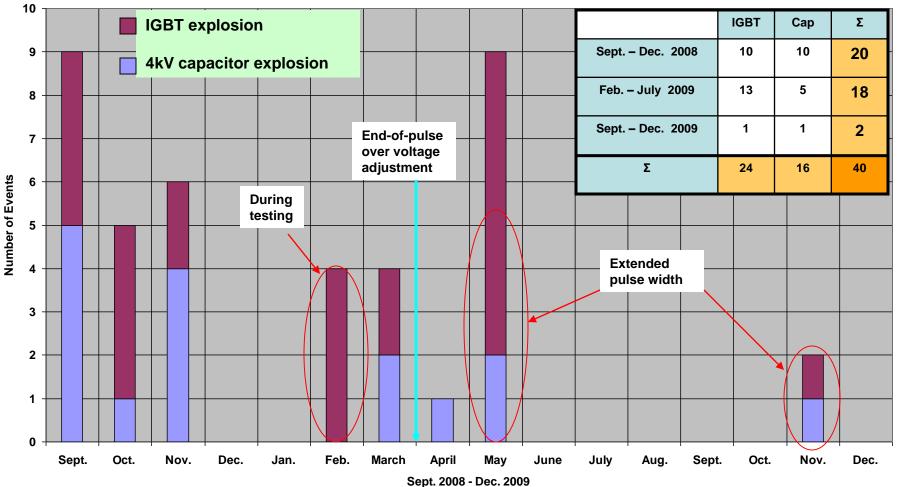

4.

5.

6.

Analysis of misc./unknown trips

- Last run Sept. Dec. 2009 considered;
- Beam down time 69 hours;
- HVCMs SCL-12 and SCL-18 are main contributors;
- Many different trips with/without indication - long troubleshooting;
- Fixed by replacing SCR control head (old units tested – OK);
- Control issues: poor connectors, SCR control head, modulator control chassis, wiring – retermination and connector replacement in plans;
- Reason not clear up to now;
- HVCM DTL-3 PPS interlock issues (contacts in connectors and switches);
- Problem of diagnostics still exists



HVCM Smoke Alarm Events by Months

(Sept.2008 - Dec. 2009)

Number of Events

Smoke Alarm Events

Analysis

1. <u>Run 2008</u>:

- Overheating, end of life of original small 4kV flammable oil filled capacitors;
- IGBT stress/internal damage (end-of-pulse over voltage)
- 2. <u>Feb. July 2009</u>:
 - Rest of small 4kV capacitors failure, no one of new caps lost;
 - 4 events due to IGBT during adjustment and testing in February no contribution to beam downtime;
 - Since April quantum fixed modulator pulse width; adjustment done to reduce IGBT over voltage stress at the end of the pulse;
 - Half of failures in May when pulse width was increased by 15%;
 - Sequence of 3 IGBT explosion events on SCL-14 modulator in May use of old IGBTs, collateral damage inside enclosure may cause the event

3. <u>Sept. – Dec. 2009</u>:

- Extended pulse width since beginning;
- Only two events; with minimal fire/smoke

SCL Mod 15: Smoke alarm

An NWL capacitor failed on B phase IGBT switch plate on 11/07/2009

- Downtime 12.9 hours
- Classic capacitor failure blast only no fire (canola oil) less damage
- Adjacent caps, IGBTs and driver cards destroyed
- Charring of the cables that were above the cap bank replaced
- Header cable damage replaced
- Switch plate replaced
- Re-termination several fiber cables
- Cleaning up the mess

19 Managed by UT-Battelle for the U.S. Department of Energy

HV Capacitors Failure History

- 1. <u>Small case size BTDP oil filled GA caps</u>:
 - Overheating up to 160°F,
 - End of life,
 - Explosion with fire (5 events during Feb.-July 2009),
 - Main contribution to downtime,
 - All removed
- 2. <u>New large BTDP oil filled GA caps</u>:
 - Heating up to 150°F,
 - No catastrophic explosion events,
 - More damage inside enclosure in case of fire more time to repair needed
 - All removed
- 3. <u>New large RSO oil filled NWL caps</u>:
 - Overheating up to 165°F,
 - Only one catastrophic failure during last run,
 - Creaked and leaked during last run– poor case design,
 - Short life time if duty factor increased
 - All removed
- 4. Dry self-healing AVX/TPC caps:
 - Case temperature does not exceed 100°F at full duty cycle,
 - No degradation after 1 year usage (were installed on CCL-4 in Dec.2008,
 - Tested for 500 fault events (10 years equivalent),
 - Installed everywhere during present outage
- 5. <u>120 kV caps inside oil tank</u>:
 - Overheating when duty cycle increased,
 - Long repair main contribution to down time during last run,
 - Have to be replaced with new design higher rating caps

RSO = canola oil (vegetable oil) DRY = self-healing metalized polypropylene (no oil)

BTDP = benzyltoluene diphenylethane

HVCM Upgrade

Done in the past:

- 1. Tank:
 - new boost transformer
 - upgraded oil cooling assembly
 - resonant capacitors replaced, cap value adjusted
 - new design de-Qing resistors and snubber assembly
 - new inductive choke
- 2. SCR:
 - fiber optic cabling
 - new hard firing cards and wiring inside the cabinet
 - fast response protection circuit
 - upgraded snubber boards
- 3. Dynamic fault / magnetic flux detection system implementation
- 4. Implement Alarm Handler for smoke event
- 5. Water panel box circuitry upgrade
- 6. Additional diagnostic for IGBT and cap over current installed

HVCM Upgrade

Done during CY 2009:

- New modulator SCL-14: new configuration modulator-klystrons, (SCL modulator output voltages increased up to 75 kV)
- 4kV/10uF capacitors replacement
- IGBT driver cards (easier to replace, more robust connections)
- IGBT switch plate mechanical (gaps increased, additional insulation)
- IGBT switch plate electrical (120 V AC distribution wiring)
- Replacement of header cables (flame-proof cable used)
- "Banana" type termination of header cables replaced with hard bolted
- Replacement feed thru insulating plates on the top of tanks (flameproof material)
- Oil pumps (seal to prevent water leak, mechanical assembling modification – easier to access and repair)
- SCR snubber boards (wiring, caps soldering)
- Monitoring logic and screen view modification (helpful for troubleshooting)
- Done on all DTL, CCL and SCL modulators (15 units)

HVCM Maintenance Activities

Works during Jan. 2010:

- New 4 kV self-healing capacitors installed on all modulators
- 120 kV caps replacement inside DTL and CCL tanks
- Tank inspection and repair: DTL, CCL, SCL-1 and SCL-14
- HV output cables checkout/repair all modulators
- Interlock connector replacement on water panel box
- New higher rating resonant caps ordered for testing
- 2kV/10uF dry type capacitors received and tested in RFTF

Plans for summer 2010 outage:

- Replace parts with low power rating in the tank (caps, resistors, cables) critical for high duty factor operation
- Mechanical upgrade of safety enclosure doors clamping (fast access inside, robust frame)
- Install additional shield plate inside enclosure
- Fiber optic patch panel installation (short fibers inside enclosure)
- SCR control head connectors replacement/re-termination
- Partial IGBT driver replacement

<u>Conclusion</u>

Results:

- Many of the HVCM subsystems/components have been upgraded in 2009 to improve reliability and resistance to fire events
- Number of smoke/fire catastrophic events reduced
- Down time caused by IGBT faults reduced since end-of-pulse stress problem resolved
- 4 kV capacitors problem hopefully resolved
- Last run operation with increased duty cycle reveals new problems
- Additional efforts needed to
 understand root causes of failures

Plans:

- Replace low power rated parts in the tank (boost and filter caps, de-Qing resistors, HV cables)
- New higher voltage rating IGBT usage
- New IGBT driver implementation
- Mechanical upgrade of safety enclosure frame and door's clamping
- Oil cooling system upgrade (outside heating exchanger)
- New intelligent FPGA based controller
- IGBT switch plate test stand

R&D efforts underway to support future activities

Smoke Alarm Events

Main results

Number of catastrophic events reduced

1. IGBT:

- Use new devices when replaced;
- Improved thermal bonding procedures implemented;
- Overvoltage problem solved, minimal problems since
- 2. Capacitors:
 - Original small caps were replaced with new large caps;
 - RSO filled instead of BTDP were used;
 - All oil filled caps replaced with dry self-healing caps during Jan. 2010 maintenance period
- Implement Alarm Handler for smoke detector
 events
- 4. Old style header cables replaced with nonflammable and improved end connections
- 5. Inside enclosure: replaced combustible materials with flame-proof
- 6. Emergency Off modified to remove 2100 V primary energy source automatically
- 7. Installing shrapnel shields around capacitors to minimize collateral damage

